Leaning WRAP-UPS® Basic Math supports these Common Core State Standards: #### **GRADE K** #### **Operations & Algebraic Thinking** - 1. Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. - 2. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. - 3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1). - 4. For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation. - 5. Fluently add and subtract within 5. #### Number & Operations in Base Ten 1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. #### **GRADE 1** #### **Operations & Algebraic Thinking** - 3. Apply properties of operations as strategies to add and subtract. Examples: If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known. (Commutative property of addition.) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 = 12. (Associative property of addition.) - 6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 4 = 13 3 1 = 10 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13). - 8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 + ? = 11, 5 = _ 3, 6 + 6 = _$. #### **Number & Operations in Base Ten** 4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. #### **GRADE 2** #### **Operations & Algebraic Thinking** 2. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers. #### **Number & Operations in Base Ten** - 5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. - 6. Add up to four two-digit numbers using strategies based on place value and properties of operations. 7. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds. #### **GRADE 3** #### **Operations & Algebraic Thinking** - 1. Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7 - 2. Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8. - 4. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48, 5 = \div 3, 6 \times 6 = ?$ - 6. Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8. - 7. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers #### **Number & Operations in Base Ten** - 2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. - 3. Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9×80 , 5×60) using strategies based on place value and properties of operations. #### Number & Operations—Fractions - 1. Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b. - 3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model. #### **GRADE 4** #### **Number & Operations in Base Ten** - 4. Fluently add and subtract multi-digit whole numbers using the standard algorithm. - 5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. - 6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. #### **Number and Operations—Fractions** - 1. Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. - 3. Understand a fraction a/b with a > 1 as a sum of fractions 1/b. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. *Examples:* 3/8 = 1/8 + 1/8 + 1/8; 3/8 = 1/8 + 2/8; 21/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. 6. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram. #### **GRADE 5** #### **Number & Operations in Base Ten** - 5. Fluently multiply multi-digit whole numbers using the standard algorithm. - 6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models #### **Number & Operations—Fractions** 1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.) Learning Palette® Mathematics Correlation (Standards also met using Learning WRAP-UPS® Basic Math are highlighted in yellow). | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers, Coins, & Fractions Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to Geometry and Measurement Card(s): | Set: Intro to Data Card(s): | Level | |---|--|---|--------------------------------|---|-----------------------------|-------| | Counting & Cardinality | I a . a | T | T = = | T | | T 1.6 | | 1. Count to 100 by ones and by tens. | 6, 10, 11 | 1, 2, 12 | 2, 4, 5, 8, 11, 12 | | | K | | | | Numeration Step 2: 3, 7 | | | | 1 | | 2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1). | 5 | | 4, 5, 12 | | | К | |
begin at 1). | | Numeration Step 2: 4, 5, 7, 8, 9 | 1 – 4 | | | 1 | | 3. Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a | 6, 10, 11 | 1, 2, 12 | | | | К | | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers,
Coins, &
Fractions
Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to
Geometry and
Measurement
Card(s): | Set: Intro to Data Card(s): | Level | |---|--|--|--------------------------------|--|-----------------------------|-------| | count of no objects). | Numeration Step 1: | | | | | 1 | | 4. Understand the relationship between | 6, 10, 11, 12 | 1, 2, 3, 5, 8, 11, 12 | | | | К | | numbers and quantities; connect counting to cardinality. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. Understand that each successive number name refers to a quantity that is one larger. | Numeration Step 1: 1, 3 | | | | | 1 | | 5. Count to answer "how many?" questions | 6, 10, 11, 12 | 1, 2, 3, 5, 8, 11, 12 | | | | К | | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers,
Coins, &
Fractions
Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to Geometry and Measurement Card(s): | Set: Intro to Data Card(s): | Level | |---|--|--|--------------------------------|---|-----------------------------|-------| | about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. | Numeration Step 1: 1, 3 | | | | | 1 | | 6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. | 4 | 6 | | | | K | | | | | | | | 1 | | 7. Compare two numbers between 1 and 10 presented as written numerals. | 7 | | | | | К | | | Numeration Step 1: 2 | Numeration Step 2:
6 | | | | 1 | | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers,
Coins, &
Fractions
Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to
Geometry and
Measurement
Card(s): | Set: Intro to Data Card(s): | Level | |--|--|--|------------------------------------|--|-----------------------------|-------| | 1. Represent addition
and subtraction with
objects, fingers, mental
images, drawings, | 12 | 11, 12 | | | | K | | sounds (e.g., claps),
acting out situations,
verbal explanations,
expressions, or
equations. | Numeration Step 1:
3 – 12 | Numeration Step 3:
6 – 12 | Algebra Concepts:
1 – 4, 7 – 12 | | | 1 | | 2. Solve addition and
subtraction word
problems, and add and
subtract within 10, e.g., | 12 | 11, 12 | | | | К | | by using objects or
drawings to represent
the problem. | Numeration Step 1:
3 – 12 | Numeration Step 3:
6 – 12 | Algebra Concepts:
1 – 4, 7 – 12 | | | 1 | | 3. Decompose
numbers less than or
equal to 10 into pairs in | | | | | | К | | more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1). | Numeration Step 1: 7, 8, 11, 12 | | | | | 1 | | 4. For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record | | | | | | К | | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers,
Coins, &
Fractions
Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to
Geometry and
Measurement
Card(s): | Set: Intro to Data
Card(s): | Level | |--|--|--|--------------------------------|--|--------------------------------|-------| | the answer with a drawing or equation. | Numeration Step 1:
12 | | | | | 1 | | 5. Fluently add and subtract within 5. | 12 | 12 | | | | К | | | Numeration Step 1:
3 – 12 | Numeration Step 3:
6 – 10 | | | | 1 | | Number & Operations i | n Base Ten | | | 1 | 1 | | | 1. Compose and decompose numbers from 11 to 19 into ten ones and some further | | | | | | K | | ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, | | Numeration Step 2:
1, 2 | | | | 1 | | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers, Coins, & Fractions Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to Geometry and Measurement Card(s): | Set: Intro to Data
Card(s): | Level | |--|--|---|--------------------------------|---|--------------------------------|-------| | four, five, six, seven,
eight, or nine ones. | | | | | | | | Measurement & Data | | | | | | · | | 2. Directly compare
two objects with a
measurable attribute in
common, to see which
object has "more
of"/"less of" the
attribute, and describe | | | | 6, 7, 8, 9, 10 | 1 – 11 | К | | the difference. For example, directly compare the heights of two children and describe one child as taller/shorter. | | | | Geometry and
Measurement: 3, 4,
6 | Probability &
Statistics: 2 | 1 | | 3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. | | | | 1 – 5 | | К | | | | | | Geometry and
Measurement: 1, 2 | | 1 | | GRADE K | Set: Matching & Early Numbers Card(s): | Set: Numbers, Coins, & Fractions Card(s): | Set: Intro to Algebra Card(s): | Set: Intro to Geometry and Measurement Card(s): | Set: Intro to Data
Card(s): | Level | |--|--|---|--------------------------------|---|--------------------------------|-------| | 1. Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. | | | | 2, 4, 5, 11 | | K | | | | | | 2 | | 1 | | 2. Correctly name
shapes regardless of
their orientations or
overall size. | | | | 1 – 4 | | К | | | | | | Geometry and
Measurement: 1, 2 | | 1 | | GRADE 1 | Set: Numeration
Step 1
Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability
& Statistics
Card(s): | Level | |-------------------------------------|---------------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | Operations & Algebraic | Thinking | | | | | | | | 3. Apply properties of | | | | | | | K | | operations as | | | | | | | | | strategies to add and | 11 | | 6, 10 | | | | 1 | | subtract. ² Examples: If | | | | | | | | | 8 + 3 = 11 is known, | | | | | | | 2 | | then $3 + 8 = 11$ is also | | | | | | | 2 | | known. (Commutative | | | | | | | | | property of addition.) | | | | | | | | | To add 2 + 6 + 4, the | | | | | | | | | second two numbers | | | | | | | | | can be added to make | | | | | | | | | a ten, so $2 + 6 + 4 = 2$ | | | | | | | | | + 10 = 12. (Associative | | | | | | | | | property of addition.) | | | | | | | | | GRADE 1 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability
& Statistics
Card(s): | Level |
--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | Understand subtraction as an | | | | | | | K | | unknown-addend
problem. For example, | 6 – 11 | | 6, 10, 12 | | | | 1 | | subtract 10 – 8 by finding the number that makes 10 when added to 8. Add and subtract within 20. | 1, 2 | | | | | | 2 | | 6. Add and subtract within 20, demonstrating fluency | Matching & Early
Numbers: 12 | | | | | | К | | for addition and subtraction within 10. Use strategies such as | 3 – 12 | | 6 – 12 | | | | 1 | | counting on; making ten (e.g., $8+6=8+2+4=10+4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$). | 1, 2 | | | 7 – 10 | | | 2 | | 8. Determine the unknown whole | Matching & Early Numbers: 12 | | | | | | K | | number in an addition | 3 – 12 | | 6 – 12 | | | | 1 | | GRADE 1 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|--|--|---------------------------------|---|--------------------------------------|--|-------| | or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 + ? = 11, 5 = -3, 6 + 6 =$ | 1, 2, 6 – 12 | 6 – 12 | | 7 – 10 | | | 2 | | Number & Operations i | n Base Ten | | I | L | L | | 1 | | 1. Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. | Matching & Early
Numbers: 6, 10, 11 | Numbers, Coins,
and Fractions: 1, 2,
4, 12 | | Intro to Algebra: 2,
4, 5, 8, 11, 12 | | | К | | | | 3, 4, 5, 7, 8, 9 | | 1 – 4 | | | 1 | | | | | 6, 8 | 1, 2, 3 | | | 2 | | 2. Understand that the two digits of a two-digit number represent | | | | | | | К | | amounts of tens and ones. Understand the following as special | | 1, 2 | | | | | 1 | | cases: 10 can be thought of as a bundle of ten ones — called a "ten." The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, | 3 | 1, 2, 3, 4 | | | | | 2 | | GRADE 1 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | seven, eight, or nine ones. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine | | | | | | | | | tens (and 0 ones) 3. Compare two two-digit numbers based on | | | | | | | К | | meanings of the tens
and ones digits,
recording the results of | | 6 | | | | | 1 | | comparisons with the symbols >, =, and <. 4. Add within 100. | 4 | | | | | | 2 | | including adding a two-digit number and a | Matching & Early
Numbers: 12
3, 4, 7, 8, 11, 12 | | 6, 8, 10, 11 | | | | K 1 | | one-digit number, and adding a two-digit | 1, 6 – 9 | | 0, 0, 10, 11 | 7 – 10 | | | 2 | | number and a multiple
of 10, using concrete
models or drawings | | | | | | | | | and strategies based on place value, | | | | | | | | | properties of operations, and/or the relationship between | | | | | | | | | addition and subtraction; relate the | | | | | | | | | strategy to a written method and explain the reasoning used. | | | | | | | | | Understand that in adding two-digit | | | | | | | | | numbers, one adds
tens and tens, ones
and ones; and | | | | | | | | | GRADE 1 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | sometimes it is necessary to compose a ten. | | | | | | | | | 5. Given a two-digit
number, mentally find
10 more or 10 less
than the number, | | Numbers, Coins,
and Fractions: 5 | | Intro to Algebra: 12 | | | К | | without having to count; explain the reasoning used. | | 7 | | | | | 1 | | | | | | 3 | | | 2 | | Measurement & Data | | | | | | | | | Order three objects by length; compare the lengths of two objects indirectly by using a | | | | | | | К | | third object. | | | | | 3 | | 1 | | | | | | | | | 2 | | 2. Express the length of an object as a whole number of length units, | | | | | | | К | | by laying multiple
copies of a shorter
object (the length unit) | | | | | 5 | | 1 | | GRADE 1 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps. | | | | | 11 | | 2 | | 3. Tell and write time in hours and half-hours | | | | | | | K | | using analog and digital clocks. | | | | | 7, 8 | | 1 | | | | | | | 6, 7, 8 | | 2 | | 4. Organize, represent, and interpret data with | | | | | | Intro to Data: 1 – 12 | K | | up to three categories; ask and answer | | | | | | 1 – 12 | 1 | | questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. | | | | | | 1 – 12 | 2 | | Geometry | T | | T | • | . | • | | | 3. Partition circles and rectangles into two and four equal shares, | | Numbers, Coins, & Fractions: 7, 10 | | | | | K | | describe the shares | | | 4 | | | | 1 | | GRADE 1 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares. | | | 4 | | | | 2 | | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | Operations & Algebraic | Thinking | | | | | | | | 2. Fluently add and subtract within 20 using mental | 3 – 12 | | 6 – 12 | 7 – 9 | | | 1 | | strategies. By end of
Grade 2, know from
memory all sums of | 1, 2, 7 – 12 | | | 1 – 3, 7 – 10 | | | 2 | | two one-digit numbers. | | | | 1, 2, 3, 4, 6, 9, 10 | | | 3 | | 3. Determine whether a group of objects (up to | | 10, 11 | | | | | 1 | | 20) has an odd or even number of members, | | | | | | | 2 | | e.g., by pairing objects
or counting
them by 2s;
write an equation to | | | | 1 | | | 3 | | express an even
number as a sum of
two equal addends. | | | | | | | | | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability
& Statistics
Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | 4. Use addition to find the total number of | | | | | | | 1 | | objects arranged in | | | | | | | 2 | | rectangular arrays with up to 5 rows and up to | | | 1 | | | | 3 | | 5 columns; write an | | | | | | | | | equation to express the total as a sum of equal | | | | | | | | | addends. | | | | | | | | | Number & Operations in | n Base Ten | | | | | | | | Understand that the three digits of a three-digit number represent | | 1, 2 | | | | | 1 | | amounts of hundreds,
tens, and ones; e.g.,
706 equals 7
hundreds, 0 tens, and | 3 | 1, 2, 5, 6, 8, 10, 11 | | | | | 2 | | 6 ones. Understand the following as special cases: 100 can be thought of as a bundle of ten tens—called a "hundred." The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). | 1 | | | | | | 3 | | 2. Count within 1000; skip-count by 5s, 10s, and 100s. | | 3, 7 – 9 | | 1 – 4 | | | 1 | | 4.14 1000. | | | 6 | 1, 3 | | | 2 | | | | | | 1, 2, 3, 4, 9 | | | 3 | | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | 3. Read and write
numbers to 1000 using
base-ten numerals, | | 1, 2 | | | | | 1 | | number names, and expanded form. | | 5, 6 | | | | | 2 | | | 1 | | | | | | 3 | | 4. Compare two three-
digit numbers based on
meanings of the | | 6 | | | | | 1 | | meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to | | 4 | | | | | 2 | | record the results of comparisons. | 2, 11 | | | | | | 3 | | 5. Fluently add and subtract within 100 | 3 – 12 | | 6 – 12 | | | | 1 | | using strategies based on place value, properties of | 1, 2, 7 – 12 | | 7 – 9 | | | | 2 | | operations, and/or the relationship between addition and subtraction. | | | | 1 – 5, 9, 10 | | | 3 | | 6. Add up to four two-
digit numbers using | | | 11 | | | | 1 | | strategies based on place value and properties of operations. | 7 – 9 | | | | | | 2 | | | 4, 5 | | | | | | 3 | | 7. Add and subtract within 1000, using | 3 - 12 | | 6 – 12 | | | | 1 | | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra
Concepts
Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |-------------------------|---------------------------------|---------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--|-------| | concrete models or | 1, 2, 7 – 12 | 8 – 12 | | | | | 2 | | drawings and | | | | | | | | | strategies based on | 5, 6, 7, 8, 12 | | | | | | 3 | | place value, properties | -, -, , -, | | | | | | | | of operations, and/or | | | | | | | | | the relationship | | | | | | | | | between addition and | | | | | | | | | subtraction; relate the | | | | | | | | | strategy to a written | | | | | | | | | method. Understand | | | | | | | | | that in adding or | | | | | | | | | subtracting three-digit | | | | | | | | | numbers, one adds or | | | | | | | | | subtracts hundreds | | | | | | | | | and hundreds, tens | | | | | | | | | and tens, ones and | | | | | | | | | ones; and sometimes it | | | | | | | | | is necessary to | | | | | | | | | compose or | | | | | | | | | decompose tens or | | | | | | | | | hundreds. | | | | | | | | | Measurement & Data | | | | | | | | | 1. Measure the length | | | | | 5 | | 1 | | of an object by | | | | | | | | | selecting and using | | | | | | | | | appropriate tools such | | | | | 11 | | 2 | | as rulers, yardsticks, | | | | | | | | | meter sticks, and | | | | | | | | | measuring tapes. | | | | | | | | | | | | | | 7 | | 3 | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | 2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate | | | | | 5 | | 1 | | to the size of the unit chosen. | | | | | 11 | | 2 | | | | | | | 7 | | 3 | | 7. Tell and write time | | | | | 7, 8 | | 1 | | from analog and digital clocks to the nearest | | | | | 6, 7, 8 | | 2 | | five minutes, using a.m. and p.m. | | | | | 10 | - | 3 | | 8. Solve word problems involving | | | 1, 2, 3 | | | | 1 | | dollar bills, quarters, | | | 1 | 11, 12 | | | 2 | | dimes, nickels, and pennies, using \$ and ¢ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have? | | 9 – 12 | | | | | 3 | | 9. Generate | | | | | | | 1 | | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | measurement data by | | | | | 11 | | 2 | | measuring lengths of | | | | | 7 | | 3 | | several objects to the | | | | | / | | 3 | | nearest whole unit, or | | | | | | | | | by making repeated | | | | | | | | | measurements of the | | | | | | | | | same object. Show the | | | | | | | | | measurements by | | | | | | | | | making a line plot, | | | | | | | | | where the horizontal | | | | | | | | | scale is marked off in | | | | | | | | | whole-number units. | | | | | | 7 40 | | | 10. Draw a picture | | | | | | 7 – 10 | 1 | | graph and a bar graph | | | | | | 10 – 12 | 2 | | (with single-unit scale) | | | | | | 10 - 12 | - | | to represent a data set | | | | | | 10, 11 | 3 | | with up to four | | | | | | 1.0, | | | categories. Solve simple put-together, | | | | | | | | | take-apart, and | | | | | | | | | compare problems ¹ | | | | | | | | | using information | | | | | | | | | presented in a bar | | | | | | | | | graph. | | | | | | | | | Geometry | | | | | | | 1 | | Recognize and draw | | | | | 1, 2 | | 1 | | shapes having | | | | | 1, 2 | | ' | | specified attributes, | | | | | 2-5 | | 2 | | such as a given | | | | | | | | | number of angles or a | | | | | 5, 6 | | 3 | | given number of equal | | | | | | | | | faces. Identify | | | | | | | | | triangles, | | | | | | | | | quadrilaterals, | | | | | | | | | pentagons, hexagons, | | | | | | | | | and cubes. | | | | | | | | | Partition a rectangle | | | 4 | | | | 1 | | g. | | | | | | | | | GRADE 2 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | into rows and columns of same-size squares | | | 4 | | | | 2 | | and count to find the total number of them. | | 1 | | | | | 3 | | Partition circles and rectangles into two, | | | 4 | | | | 1 | | three, or four equal shares, describe the | | | 4 | | | | 2 | | shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape. | | 1 | | | | | 3 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level |
--|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | Operations & Algebrai | c Thinking | | | | | | | | 1. Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. <i>For</i> | | | 7, 9, 10 | | | | 2 | | example, describe a context in which a total number of objects can be expressed as 5 × 7. | | | 1, 9 | | | | 3 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | | 12 | | | | | | 4 | | 2. Interpret whole-
number quotients of
whole numbers, e.g., | | | 11, 12 | | | | 2 | | interpret 56 ÷ 8 as the
number of objects in
each share when 56
objects are partitioned | | | 2 | | | | 3 | | equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8. | 12 | | | | | | 4 | | 3. Use multiplication and division within 100 to solve word problems | | | 7, 9, 10 | | | | 2 | | in situations involving equal groups, arrays, | | | 1, 9 | | | | 3 | | and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. | 12 | | | | | | 4 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | 4. Determine the | , , | , , | , , | , , | , , | • • | 2 | | unknown whole | | | | | | | | | number in a | | | | | | | | | multiplication or | | | 1 – 12 | 7, 8 | | | 3 | | division equation | | | | | | | | | relating three whole | | | | | | | | | numbers. For example, | 5 – 12 | | | 4, 5, 7, 9– 11 | | | 4 | | determine the | Ŭ 1 <u>−</u> | | | 1, 0, 7, 0 | | | ' | | unknown number that | | | | | | | | | makes the equation | | | | | | | | | true in each of the | | | | | | | | | equations $8 \times ? = 48, 5$ | | | | | | | | | $=$ ± 3 , $6 \times 6 = ?$ | | | | | | | | | Apply properties of | | | | | | | 2 | | operations as | | | | | | | | | strategies to multiply | | | | | | | | | and divide. Examples: | | | 7 | | | | 3 | | If $6 \times 4 = 24$ is known, | | | / | | | | 3 | | then $4 \times 6 = 24$ is also | | | | | | | | | known. (Commutative | | | | | | | | | property of | | | | | | | 4 | | multiplication.) 3 × 5 × | | | | | | | | | 2 can be found by 3 × | | | | | | | | | $5 = 15$, then $15 \times 2 =$ | | | | | | | | | 30 , or by $5 \times 2 = 10$, | | | | | | | | | then $3 \times 10 = 30$. | | | | | | | | | (Associative property | | | | | | | | | of multiplication.) | | | | | | | | | Knowing that $8 \times 5 =$ | | | | | | | 1 | | 40 and $8 \times 2 = 16$, one | | | | | | | | | can find 8×7 as $8 \times (5)$ | | | | | | | | | $(+2) = (8 \times 5) + (8 \times 2)$ | | | | | | | | | = 40 + 16 = 56. | | | | | | | | | (Distributive property.) | | | | | | | 1 | | 6. Understand division | | | 11, 12 | | | | 2 | | as an unknown-factor | | | | | | | | | problem. For example, | | | | | | | 1 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | find 32 ÷ 8 by finding
the number that makes
32 when multiplied by | | | 7 | | | | 3 | | 8. | | | | | | | 4 | | 7. Fluently multiply and divide within 100, using strategies such as the relationship | | | 7, 9 – 12 | | | | 2 | | between multiplication
and division (e.g.,
knowing that 8 × 5 =
40, one knows 40 ÷ 5
= 8) or properties of | | | 1 – 12 | | | | 3 | | operations. By the end
of Grade 3, know from
memory all products of
two one-digit numbers. | 5 – 12 | | | | | | 4 | | 9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain | | | 6, 8 | 1 – 3 | | | 2 | | them using properties
of operations. For
example, observe that
4 times a number is
always even, and
explain why 4 times a | | | | 1 – 4, 9 – 12 | | | 3 | | number can be
decomposed into two
equal addends. | | | | 1 – 7 | | | 4 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | Use place value understanding to round whole numbers to the | | | | | | | 2 | | nearest 10 or 100. | 3, 4, 6 | | | | | | 3 | | | 2 | | | | | | 4 | | 2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or | 1, 2, 7 – 12 | 8 – 12 | 7, 9 | | | | 2 | | | 5 – 8, 12 | | | | | | 3 | | the relationship
between addition and
subtraction. | 3, 4 | | | | | | 4 | | 3. Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9 × | | | | | | | 2 | | strategies based on place value and properties of operations. | | | 10 | | | | 3 | | | 5 | | | | | | 4 | | Number & Operations- | -Fractions | 1 | <u>I</u> | <u> </u> | | I | _1 | | 1. Understand a fraction 1/b as the quantity formed by 1 | | | 4 | | | | 2 | | GRADE 3 | Set: Numeration
Step 1
Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | part when a whole is partitioned into b equal parts; understand a | | 1 | | | | | 3 | | fraction <i>a/b</i> as the quantity formed by a parts of size 1/ <i>b</i> . | | 1 | | | | | 4 | | 2. Understand a fraction as a number on the number line; | | | | | | | 2 | | represent fractions on
a number line diagram.
Represent a fraction | | | | | | | 3 | | 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line. Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. | | 3 | | | | | 4 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |-----------------------------|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | 3. Explain equivalence | | | | | | | 2 | | of fractions in special | | | | | | | | | cases, and compare | | | | | | | | | fractions by reasoning | | | | | | | | | about their size. | | | | | | | | | Understand two | | 3, 4 | | | | | 3 | | fractions as equivalent | | 3, 4 | | | | | ٥ | | (equal) if they are the | | | | | | | | | same size, or the | | | | | | | | | same point on a | | | | | | | | | number line. | | | | | | | | | Recognize and | | 5 – 7 | | | | | 4 | |
generate simple | | | | | | | | | equivalent fractions, | | | | | | | | | e.g., $1/2 = 2/4$, $4/6 =$ | | | | | | | | | 2/3). Explain why the | | | | | | | | | fractions are | | | | | | | | | equivalent, e.g., by | | | | | | | | | using a visual fraction | | | | | | | | | model. | | | | | | | | | Express whole | | | | | | | | | numbers as fractions, | | | | | | | | | and recognize | | | | | | | | | fractions that are | | | | | | | | | equivalent to whole | | | | | | | | | numbers. Examples: | | | | | | | | | Express 3 in the form 3 | | | | | | | | | = 3/1; recognize that | | | | | | | | | 6/1 = 6; locate 4/4 and | | | | | | | | | 1 at the same point of | | | | | | | | | a number line diagram. | | | | | | | 1 | | Compare two fractions | | | | | | | | | with the same | | | | | | | 1 | | numerator or the same | | | | | | | | | denominator by | | | | | | | | | reasoning about their | | | | | | | | | size. Recognize that | | | | | | | 1 | | comparisons are valid | | | | | | | 1 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | only when the two | • | | | | | | | | fractions refer to the | | | | | | | | | same whole. Record | | | | | | | | | the results of | | | | | | | | | comparisons with the | | | | | | | | | symbols >, =, or <, and justify the conclusions, | | | | | | | | | e.g., by using a visual | | | | | | | | | fraction model. | | | | | | | | | Measurement & Data | | | | | | | | | Tell and write time | | | | | 6 – 8 | | 2 | | to the nearest minute | | | | | | | | | and measure time | | | | | | | | | intervals in minutes. | | | | | | | | | Solve word problems | | | | | | | | | involving addition and | | | | | 9, 10 | | 3 | | subtraction of time | | | | | | | | | intervals in minutes, | | | | | | | | | e.g., by representing | | | | | | | | | the problem on a | | | | | | | | | number line diagram. | | | | | | | 4 | 2. Measure and | | | | | | | 2 | | estimate liquid | | | | | | | - | | volumes and masses | | | | | | | | | of objects using | | | | | | | | | standard units of | | | | | | | | | grams (g), kilograms | | | | | 3 | | 3 | | (kg), and liters (l). Add, | | | | | | | | | subtract, multiply, or | | | | | | | | | divide to solve one- | | | | | | | | | step word problems | | | | | | | | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | involving masses or
volumes that are given
in the same units, e.g.,
by using drawings
(such as a beaker with
a measurement scale)
to represent the
problem. | | | | | 10 | | 4 | | 3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several | | | | | | 10 – 12 | 2 | | categories. Solve one-
and two-step "how
many more" and "how
many less" problems
using information | | | | | | 10, 11 | 3 | | presented in scaled
bar graphs. For
example, draw a bar
graph in which each
square in the bar
graph might represent
5 pets. | | | | | | 12 | 4 | | 4. Generate measurement data by measuring lengths using rulers marked with halves and fourths | | | | | 11 | | 2 | | of an inch. Show the data by making a line plot, where the horizontal scale is marked off in | | | | | 7 | | 3 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | appropriate units—
whole numbers,
halves, or quarters. | | | | | 4 | | 4 | | 6. Measure areas by counting unit squares (square cm, square m, square ft, and improvised units). | | | | | | | 2 | | | | | | | 2 | | 3 | | | | | | | 8 | | 4 | | 7. Relate area to the operations of multiplication and addition. Find the area of a | | | | | | | 2 | | rectangle with whole-
number side lengths
by tiling it, and show
that the area is the
same as would be
found by multiplying | | | | | 2 | | 3 | | the side lengths. Multiply side lengths to find areas of rectangles with whole- number side lengths in | | | | | 9 | | 4 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | the context of solving real world and mathematical problems, and represent wholenumber products as rectangular areas in mathematical reasoning. Use tiling to show in a concrete case that the area of a rectangle with wholenumber side lengths a and b + c is the sum of a × b and a × c. Use area models to represent the distributive property in mathematical reasoning. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping | Caru(s). | Caru(s). | Card(s). | Card(s). | Caru(S). | Caru(s). | | | rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. | | | | | | | | | 8. Solve real world and mathematical problems involving perimeters of polygons, including | | | | | | | 2 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | finding the perimeter
given the side lengths,
finding an unknown
side length, and
exhibiting rectangles | | | | | 1 | | 3 | | with the same perimeter and different areas or with the same area and different perimeters. | | | | | 6, 7 | | 4 | | Geometry | | | | | | | 1 | | 1. Understand that
shapes in different
categories (e.g.,
rhombuses,
rectangles, and others) | | | | | 2, 3 | | 2 | | may share attributes
(e.g., having four
sides), and that the
shared attributes can
define a larger | | | | | 5, 6 | | 3 | | category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. | | | | | 1, 2 | | 4 | | 2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. | | | 4 | | | | 2 | | GRADE 3 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability
& Statistics
Card(s): | Level | |---|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | For example, partition
a shape into 4 parts
with equal area, and
describe the area of
each part as 1/4 of the | | 1 | | | | | З | | area of the shape. | | | | | | | 4 | | GRADE 4 | Set: Numeration
Step 1
Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level |
--|---------------------------------------|---------------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | Operations & Algebrai | c Thinking | | | | | | | | 1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. | | | 1 | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | 2. Multiply or divide to
solve word problems
involving multiplicative
comparison, e.g., by
using drawings and
equations with a | | | 9 | | | | 3 | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from | 12 | | | | | | 4 | | additive comparison. | | | | | | | 5 | | Solve multistep word problems posed | | | 9 | | | | 3 | | with whole numbers
and having whole-
number answers using | 12 | | | | | | 4 | | the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. | | | | | | | 5 | | 4. Find all factor pairs for a whole number in | | | | | | | 3 | | the range 1–100.
Recognize that a | | | | | | | 4 | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1–100 is prime or composite. | 12 | | | | | | 5 | | 5. Generate a number or shape pattern that follows a given rule. | | | | 1 – 5, 9 – 12 | | | 3 | | Identify apparent features of the pattern that were not explicit in the rule itself. For | | | | 1 – 7 | | | 4 | | example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. | | | | 1 – 4 | | | 5 | | Number & Operations i 1. Recognize that in a | in Base Ten
1, 9 | | 10 | | | | 3 | | multi-digit whole
number, a digit in one
place represents ten | , - | | | | | | | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | times what it represents in the place to its right. For example, recognize that 700 ÷ 70 = 10 by | 1 | | | | | | 4 | | applying concepts of place value and division. | 1 | | | | | | 5 | | 2. Read and write multi-digit whole | 1, 9 – 12 | | | | | | 3 | | numbers using base-
ten numerals, number | 1 | | | | | | 4 | | names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. | 1 | | | | | | 5 | | 3. Use place value understanding to round multi-digit whole numbers to any place. | 3 | | | | | | 3 | | | 2 | | | | | | 4 | | | | | | | | | 5 | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | 4. Fluently add and subtract multi-digit whole numbers using the standard algorithm. | 5 – 8, 12 | | | | | | 3 | | J | 3, 4 | | | | | | 4 | | | 2 | | | | | | 5 | | 5. Multiply a whole number of up to four digits by a one-digit whole number, and | | | 1, 3, 5, 7 – 11 | | | | 3 | | multiply two two-digit
numbers, using
strategies based on | 5 – 9, 12 | | | | | | 4 | | place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | 3 – 6 | | | | | | 5 | | 6. Find whole-number quotients and remainders with up to | | | 2, 4, 6, 7, 9, 12 | | | | 3 | | four-digit dividends
and one-digit divisors,
using strategies based | 10 – 12 | | | | | | 4 | | on place value, the properties of operations, and/or the relationship between multiplication and | 7 – 9 | | | | | | 5 | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | division. Illustrate and | | | | | | | | | explain the calculation | [| | | | | | | | by using equations, | [| | | | | | | | rectangular arrays, | | | | | | | | | and/or area models. | | | | | | | | | Number and Operation | sFractions | | | | | | | | 1. Explain why a | • | 4 | | | | | 3 | | fraction a/b is | | | | | | | | | equivalent to a fraction | J | | | | | | | | $(n \times a)/(n \times b)$ by using | <u> </u> | | | | | | | | visual fraction models, | <u> </u> | 5 | | | | | 4 | | with attention to how | | | | | | | | | the number and size of | J | | | | | | | | the parts differ even | | | | | | | | | though the two | | 1 – 11 | | | | | 5 | | fractions themselves | J | | | | | | | | are the same size. Use | J | | | | | | | | this principle to | J | | | | | | | | recognize and | | | | | | | | | generate equivalent | | | | | | | | | fractions. | | | | | | | | | 2. Compare two | | 3 | | | | | 3 | | fractions with different | | | | | | | | | numerators and | | 6 – 8 | | | | | 4 | | different denominators, | | 0 | | | | | + | | e.g., by creating | | 3 | | | | | 5 | | common denominators | | | | | | | | | or numerators, or by | | | | | | | | | comparing to a | | | | | | | | | benchmark fraction | | | | | | | | | such as 1/2. | | | | | | | | | Recognize that | | | | | | | | | comparisons are valid | | | | | | | | | only when the two | | | | | | | | | fractions refer to the | | | | | | | | | same whole. Record | | | | | | | | | the results of | | | | | | | | | comparisons with | | | | | | | | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration Step 3 Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--------------------------|---|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--|-------| | symbols >, =, or <, and | | | | | | | | | justify the conclusions, | | | | | | | | | e.g., by using a visual | | | | | | | | | fraction model. | | | | | | | | | 3. Understand a | | | | | | | 3 | | fraction a/b with a > 1 | l de la companya | | | | | | | | as a sum of fractions | | 9 – 12 | | | | | 4 | | 1/ <i>b</i> . |
<mark>.</mark> | 0 .2 | | | | | 1 ' | | Understand addition | <u> </u> | 4 – 7 | | | | | 5 | | and subtraction of | <mark>.</mark> | 4 – 7 | | | | | ٥ | | fractions as joining and | l de la companya | | | | | | | | separating parts | <mark>.</mark> | | | | | | | | referring to the same | l de la companya | | | | | | | | whole. | <mark>.</mark> | | | | | | | | Decompose a fraction | l de la companya | | | | | | | | into a sum of fractions | l de la companya | | | | | | | | with the same | l de la companya | | | | | | | | denominator in more | <mark>.</mark> | | | | | | | | than one way, | l de la companya | | | | | | | | recording each | l de la companya | | | | | | | | decomposition by an | <mark>.</mark> | | | | | | | | equation. Justify | l de la companya | | | | | | | | decompositions, e.g., | l de la companya | | | | | | | | by using a visual | <mark>.</mark> | | | | | | | | fraction model. | <mark>.</mark> | | | | | | | | Examples: 3/8 = 1/8 + | l de la companya | | | | | | | | 1/8 + 1/8; $3/8 = 1/8 +$ | <mark>.</mark> | | | | | | | | 2/8 ; 2 1/8 = 1 + 1 + | l de la companya | | | | | | | | 1/8 = 8/8 + 8/8 + 1/8. | | | | | | | | | Add and subtract | | | | | | | | | mixed numbers with | | | | | | | 1 | | like denominators, | | | | | | | | | e.g., by replacing each | | | | | | | | | mixed number with an | | | | | | | 1 | | equivalent fraction, | | | | | | | | | and/or by using | | | | | | | 1 | | properties of | | | | | | | | | operations and the | · | | | | | | 1 | | GRADE 4 | Set: Numeration
Step 1
Card(s): | Set: Numeration Step 2 Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |----------------------------|---------------------------------------|---------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | relationship between | | | | | | | | | addition and | | | | | | | | | subtraction. | | | | | | | | | Solve word problems | | | | | | | | | involving addition and | | | | | | | | | subtraction of fractions | | | | | | | | | referring to the same | | | | | | | | | whole and having like | | | | | | | | | denominators, e.g., by | | | | | | | | | using visual fraction | | | | | | | | | models and equations | | | | | | | | | to represent the | | | | | | | | | problem. | | | | | | | | | 4. Apply and extend | | | | | | | 3 | | previous | | | | | | | | | understandings of | | | | | | | 4 | | multiplication to | | | | | | | - | | multiply a fraction by a | | + | | | | | +_ | | whole number. | | 8 | | | | | 5 | | Understand a fraction | | | | | | | | | a/b as a multiple of | | | | | | | | | 1/b. For example, use | | | | | | | | | a visual fraction model | | | | | | | | | to represent 5/4 as the | | | | | | | | | product $5 \times (1/4)$, | | | | | | | | | recording the | | | | | | | | | conclusion by the | | | | | | | | | equation $5/4 = 5 \times$ | | | | | | | | | (1/4). | | | | | | | | | Understand a multiple | | | | | | | | | of a/b as a multiple of | | | | | | | | | 1/b, and use this | | | | | | | | | understanding to | | | | | | | | | multiply a fraction by a | | | | | | | | | whole number. <i>For</i> | | | | | | | | | example, use a visual | | | | | | | | | fraction model to | | | | | | | | | | | | | | | | | | express 3 × (2/5) as 6 | | | | | | | | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | x (1/5), recognizing this product as 6/5. (In general, n × (a/b) = (n × a)/b.) Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie? | | | | | | | | | 6. Use decimal notation for fractions with denominators 10 or 100. For example, | | 6 | | | | | 3 | | rewrite 0.62 as 62/100;
describe a length as
0.62 meters; locate
0.62 on a number line | | | 2, 12 | | | | 4 | | diagram. | | | 2, 11 | | | | 5 | | 7. Compare two decimals to hundredths by reasoning about their | | 8 | | | | | 3 | | GRADE 4 | Set: Numeration
Step 1
Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | size. Recognize that
comparisons are valid
only when the two
decimals refer to the | | | 5, 6 | | | | 4 | | same whole. Record
the results of
comparisons with the
symbols >, =, or <, and
justify the conclusions,
e.g., by using a visual
model. | | | | | | | 5 | | Measurement & Data | | | | | | | | | 1. Know relative sizes
of measurement units
within one system of
units including km, m, | | | | | 7 | | 3 | | cm; kg, g; lb, oz.; l, ml;
hr, min, sec. Within a
single system of
measurement, express | | | | | 3 – 5 | | 4 | | measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), | | | | | 6, 8 | | 5 | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |---|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | 2. Use the four operations to solve word problems involving distances, | | 9 – 12 | | | 3, 9, 10 | | 3 | | intervals of time, liquid volumes, masses of objects, and money, including problems | | | | | 10 | | 4 | | involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. | | | | | 11 | | 5 | | Apply the area and perimeter formulas for rectangles in real world and mathematical | | | | | 1, 2 | | 3 | | problems. For example, find the width of a rectangular room given the area of the | | | | | 6 – 9 | | 4 | | flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. | | | | | 9, 10 | | 5 | | GRADE 4 | Set: Numeration Step 1 Card(s): | Set: Numeration
Step 2
Card(s): | Set: Numeration
Step 3
Card(s): | Set: Algebra Concepts Card(s): | Set: Geometry & Measurement Card(s): | Set: Probability & Statistics Card(s): | Level | |--|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--|-------| | 5. Recognize angles
as geometric shapes
that are formed
wherever two rays | | | | | | | 3 | | share a common endpoint, and understand concepts of angle measurement: | | | | | 2 | | 4 | | An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles. | | | | | 2-5 | | 5 | | 6. Measure angles in whole-number degrees using a protractor. Sketch angles of | | | | | | | 3 | | specified measure. | |
				4							3, 4		5		GRADE 4	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		---	---------------------------------	---------------------------------------	---------------------------------------	--------------------------------	--------------------------------------	--	-------		7. Recognize angle measure as additive. When an angle is decomposed into non-							3		overlapping parts, the angle measure of the whole is the sum of the angle measures of the							4		parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.					4		5		Geometry							1		1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and							3		perpendicular and parallel lines. Identify these in two-dimensional figures.					1, 2		4							1 – 5		5		Classify two- dimensional figures based on the presence or absence of parallel					5, 6		3		GRADE 4	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		--	---------------------------------	---------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		or perpendicular lines, or the presence or absence of angles of a specified size.					1, 2		4		Recognize right triangles as a category, and identify right triangles.					1, 2, 3, 5		5		3. Recognize a line of symmetry for a two- dimensional figure as a line across the figure					8		3		such that the figure can be folded along the line into matching parts. Identify line-					11		4		symmetric figures and draw lines of symmetry.					12		5		GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		---	---------------------------------------	---------------------------------------	---------------------------------	---	---	--	-------		Operations & Algebraic	Thinking			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	. , ,	•		2. Write simple expressions that record calculations with numbers, and interpret	-						4		numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as				5			5		GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		--------------------------------	---------------------------------	---------------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		18932 + 921, without									having to calculate the									indicated sum or									product.									Generate two				1 – 7			4		numerical patterns									using two given rules.									Identify apparent									relationships between									corresponding terms.									Form ordered pairs				1 – 4			5		consisting of									corresponding terms									from the two patterns,									and graph the ordered									pairs on a coordinate									plane. <i>For example</i> ,									given the rule "Add 3"									and the starting									number 0, and given									the rule "Add 6" and									the starting number 0,									generate terms in the									resulting sequences,									and observe that the									terms in one sequence									are twice the									corresponding terms in									the other sequence.									Explain informally why									this is so.									Number & Operations	in Base Ten	•	•	•	•	•			1. Recognize that in a	1						4		multi-digit number, a									digit in one place									represents 10 times as																		GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		---	---------------------------------	---------------------------------	---------------------------------------	--------------------------------	--------------------------------------	--	-------		much as it represents in the place to its right and 1/10 of what it represents in the place to its left.	1						5		2. Explain patterns in the number of zeros of the product when multiplying a number	5						4		by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.			7, 9				5		3. Read, write, and compare decimals to thousandths. Read and write decimals to			1 – 8				4		thousandths using base-ten numerals, number names, and expanded form, e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/100) + 9 × (1/1000). Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.			1, 2				5		GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		---	---------------------------------	---------------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		4. Use place value understanding to round decimals to any place.			9				4		decimals to any place.			3, 4				5		5. Fluently multiply multi-digit whole numbers using the	5 – 9, 12						4		standard algorithm.	3 – 6, 10, 11						5		6. Find whole-number quotients of whole numbers with up to four-digit dividends and	10 – 12						4		two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. 7. Add, subtract,	7 – 9		10, 11				5		multiply, and divide decimals to hundredths, using concrete models or			,						drawings and strategies based on place value, properties of operations, and/or the relationship between addition and			5 – 10				5		GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		--------------------------	---------------------------------	---------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		subtraction; relate the									strategy to a written									method and explain the									reasoning used.									Number & Operations-	-Fractions								1. Add and subtract		9 – 12					4		fractions with unlike									denominators									(including mixed									numbers) by replacing		4 – 7					5		given fractions with									equivalent fractions in																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
					such a way as to									produce an equivalent									sum or difference of									fractions with like									denominators. For									example, 2/3 + 5/4 =									8/12 + 15/12 = 23/12.									(In general, a/b + c/d =									(ad + bc)/bd.)									2. Solve word		9 – 12					4		problems involving									addition and							_		subtraction of fractions		4 – 11					5		referring to the same									whole, including cases									of unlike denominators,									e.g., by using visual									fraction models or									equations to represent									the problem. Use									benchmark fractions									and number sense of									fractions to estimate									mentally and assess									the reasonableness of									answers. For example,									GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		------------------------------------	---------------------------------	---------------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		recognize an incorrect									result $2/5 + 1/2 = 3/7$,									by observing that 3/7 <									1/2.									Apply and extend									previous									understandings of									multiplication and									division to multiply and									divide fractions.									Apply and extend							4		previous									understandings of									multiplication to									multiply a fraction or		8, 9					5		whole number by a									fraction.									Interpret the product									$(a/b) \times q$ as a parts of a									partition of q into b									equal parts;									equivalently, as the									result of a sequence of									operations $a \times q \div b$.									For example, use a									visual fraction model to									show $(2/3) \times 4 = 8/3$,									and create a story									context for this									equation. Do the same									with $(2/3) \times (4/5) =$									8/15. (In general, (a/b)									\times (c/d) = ac/bd.)									Find the area of a									rectangle with									fractional side lengths									by tiling it with unit									squares of the									GRADE 5	Set: Numeration Step 1	Set: Numeration Step 2	Set: Numeration Step 3 Card(e):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement	Set: Probability & Statistics	Level		--	------------------------	---------------------------	---------------------------------	--------------------------------	-----------------------------	-------------------------------	-------		appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as	Card(s):	Card(s):	Card(s):	Card(s):	Card(s):	Card(s):			rectangular areas. 6. Solve real world problems involving multiplication of fractions and mixed							4		numbers, e.g., by using visual fraction models or equations to represent the problem.		8, 9					5		7. Apply and extend previous							4		understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. For example, create a story context for (1/3) ÷ 4, and use a visual fraction model to show		10, 11					5		GRADE 5	Set: Numeration Step 1	Set: Numeration Step 2	Set: Numeration Step 3	Set: Algebra Concepts	Set: Geometry & Measurement	Set: Probability & Statistics	Level		------------------------------	------------------------	---------------------------	---------------------------	--------------------------	-----------------------------	-------------------------------	-------			Card(s):	Card(s):	Card(s):	Card(s):	Card(s):	Card(s):			the quotient. Use the									relationship between									multiplication and									division to explain that									$(1/3) \div 4 = 1/12$									because (1/12) × 4 =									1/3.									Interpret division of a									whole number by a unit									fraction, and compute									such quotients. For									example, create a story									context for $4 \div (1/5)$,									and use a visual									fraction model to show									the quotient. Use the									relationship between									multiplication and									division to explain that									$4 \div (1/5) = 20$ because									$20 \times (1/5) = 4.$									Solve real world									problems involving									division of unit fractions									by non-zero whole									numbers and division									of whole numbers by									unit fractions, e.g., by									using visual fraction									models and equations									to represent the									problem. For example,									how much chocolate									will each person get if									3 people share 1/2 lb									of chocolate equally?									How many 1/3-cup									servings are in 2 cups									GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		---	---------------------------------	---------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		of raisins?			, ,		, ,																																																																			Measurement & Data	T	1		T	10.5	Г	Ι 4		Convert among different-sized					3 – 5		4		standard measurement									units within a given measurement system					6, 8		5		(e.g., convert 5 cm to					0, 0				0.05 m), and use these conversions in solving									multi-step, real world									problems. 4. Measure volumes by					10		1		counting unit cubes,					10		4		using cubic cm, cubic							5		in, cubic ft, and improvised units.									5. Relate volume to the					10		4		operations of multiplication and									addition and solve real									world and mathematical problems					11		5		involving volume.									Find the volume of a									right rectangular prism with whole-number									GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		--	---------------------------------------	---------------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		side lengths by packing									it with unit cubes, and									show that the volume									is the same as would									be found by multiplying									the edge lengths,									equivalently by									multiplying the height									by the area of the									base. Represent									threefold whole-									number products as									volumes, e.g., to									represent the									associative property of									multiplication.									Apply the formulas $V =$									$I \times W \times h$ and $V = b \times h$									for rectangular prisms									to find volumes of right									rectangular prisms with									whole-number edge									lengths in the context									of solving real world									and mathematical									problems.									Recognize volume as									additive. Find volumes									of solid figures									composed of two non-									overlapping right									rectangular prisms by									adding the volumes of									the non-overlapping									parts, applying this		
					technique to solve real									world problems.									Geometry									GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		---------------------------	---------------------------------	---------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		1. Use a pair of					12		4		perpendicular number									lines, called axes, to							5		define a coordinate									system, with the									intersection of the lines									(the origin) arranged to									coincide with the 0 on									each line and a given									point in the plane									located by using an									ordered pair of									numbers, called its									coordinates.									Understand that the									first number indicates									how far to travel from									the origin in the									direction of one axis,									and the second									number indicates how									far to travel in the									direction of the second									axis, with the									convention that the									names of the two axes									and the coordinates									correspond (e.g., x-									axis and x-coordinate,									y-axis and y-									coordinate).					10		1		2. Represent real world					12		4		and mathematical									problems by graphing									GRADE 5	Set: Numeration Step 1 Card(s):	Set: Numeration Step 2 Card(s):	Set: Numeration Step 3 Card(s):	Set: Algebra Concepts Card(s):	Set: Geometry & Measurement Card(s):	Set: Probability & Statistics Card(s):	Level		--	---------------------------------------	---------------------------------------	---------------------------------	--------------------------------	--------------------------------------	--	-------		points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.							5		3. Understand that attributes belonging to a category of two-dimensional figures					1, 2		4		also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.					1, 2, 3, 5		5		4. Classify two- dimensional figures in a hierarchy based on properties.					1, 2		4		F. 25.21.020					1, 2, 3, 5		5																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								